Cellular DNA methylation program during neurulation and its alteration by alcohol exposure.
نویسندگان
چکیده
BACKGROUND Epigenetic changes are believed to be among the earliest key regulators for cell fate and embryonic development. To support this premise, it is important to understand whether or not systemic epigenetic changes coordinate with the progression of development. We have demonstrated that DNA methylation is programmed when neural stem cells differentiate (Zhou et al.,2011). Here, we analyzed the DNA methylation events that occur during early neural tube development. METHODS AND RESULTS Using immunocytochemistry, we demonstrated that the DNA methylation marks - 5-methylcytosine (5-MeC), DNA methylation binding domain 1 (MBD1), and DNA methytransferases 1 (DNMT1) were highly coordinated in temporal and spatial patterns that paralleled the progress of embryonic development. The above ontogenic program of DNA methylation was, however, subjected to environmental modification. Alcohol exposure during fetal development, which is known to cause fetal alcohol spectrum disorder, altered the density and distribution of the DNA methylation marks. The alcohol exposure (88 mM) over 6 or 44 hours at gestation day 8 (GD-8) to GD-10 altered timely DNA methylation and retarded embryonic growth. We further demonstrated that the direct inhibiting of DNA methylation with 5-aza-cytidine (5-AZA) resulted in similar growth retardation. CONCLUSIONS We identified a temporal and spatial cellular DNA methylation program after initial erasure, which parallels embryonic maturation. Alcohol delayed the cellular DNA methylation program and also retarded embryonic growth. Since direct inhibiting of DNA methylation resulted in similar retardation, alcohol thus can affect embryonic development through a epigenetic pathway.
منابع مشابه
DNA Methylation Program in Developing Hippocampus and Its Alteration by Alcohol
During hippocampal development, the Cornus Ammonis (CA) and the dentate gyrus (DG) undergo waves of neurogenesis and neuronal migration and maturation independently. This stage is widely known to be vulnerable to environmental stresses, but its underlying mechanism is unclear. Alcohol exposure has been shown to alter the expression of genes that regulate the fate, survival, migration and differ...
متن کاملEarly Maternal Alcohol Consumption Alters Hippocampal DNA Methylation, Gene Expression and Volume in a Mouse Model
The adverse effects of alcohol consumption during pregnancy are known, but the molecular events that lead to the phenotypic characteristics are unclear. To unravel the molecular mechanisms, we have used a mouse model of gestational ethanol exposure, which is based on maternal ad libitum ingestion of 10% (v/v) ethanol for the first 8 days of gestation (GD 0.5-8.5). Early neurulation takes place ...
متن کاملEffect of Exposure to 900 MHz GSM Mobile Phone Radiofrequency Radiation on Estrogen Receptor Methylation Status in Colon Cells of Male Sprague Dawley Rats
Background: Over the past several years, the rapidly increasing use of mobile phones has raised global concerns about the biological effects of exposure to radiofrequency (RF) radiation. Numerous studies have shown that exposure to electromagnetic fields (EMFs) can be associated with effects on the nervous, endocrine, immune, cardiovascular, hematopoietic and ocular systems. In spite of genetic...
متن کاملGestational Alcohol Exposure Altered DNA Methylation Status in the Developing Fetus
Ethanol is well known as a teratogenic factor that is capable of inducing a wide range of developmental abnormalities if the developing fetus is exposed to it. Duration and dose are the critical parameters of exposure that affect teratogenic variation to the developing fetus. It is suggested that ethanol interferes with epigenetic processes especially DNA methylation. We aimed to organize all o...
متن کاملStudy of the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of CDH1, GSTP1 genes in MDA-MB -453 cell line
Promoter methylation is one of the main epigenetic mechanisms that lead to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Birth defects research. Part A, Clinical and molecular teratology
دوره 91 8 شماره
صفحات -
تاریخ انتشار 2011